Basic knowledge AMK PLC programming
Software: CoDeSys

Language: Structured text

Version: 2012/36
PartNo.: 204019

Translation of the "Original Beschreibung"

ANK

ANVK

Notes on this document

Name:

Version:

Previous version:

Product version:

Copyright notice:

Reservation:

Publisher:

Service:

Internet address:

PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung

Version Change Letter symbol
2012/36 Example own FB KoJ
2011/40
Hardware
Product Firmware Version (AMK part-no.) Version
(AMK part-no.)

© AMK Arnold Miiller GmbH & Co. KG

Any transfer or reproduction of this document, as well as utilisation or communication of its
contents, requires express consent. Offenders are liable for the payment of damages. All rights are
reserved in the event of the grant of a patent or the registration of a utility model or design.

We reserve the right to modify the content of the documentation as well as the delivery options for
the product.

AMK Arnold Miller GmbH & Co. KG
Gaulstrafle 37 - 39
D-73230 Kirchheim/Teck

Germany

Phone: 0049/(0)7021/5005-0

Fax: 0049/(0)7021/5005-176

E-Mail: info@amk-antriebe.de

Managing director: Dr.h.c. Arnold Muller, Eberhard A. Muller, Dr. Glinther Vogt
Registration court Stuttgart HRB 231283; HRA 230681

Phone: 0049/(0)7021/5005-190, Fax -193

Office hours:

Mon. - Thu. 7:30-12:00am and 1:00 - 4:30pm
Fri. 7:30 - 12:00am and 1:00 - 3:30pm

Sat., Sun. and holidays Please leave your contact data on the answering phone, which is

monitored regularly between 9:00am and 17:00pm. Our service will
call you back as soon as possible.

For fast and reliable troubleshooting, you can help us by informing our Customer Service about the
following:
e Type plate data for each unit
e Software version
e Device configuration and application
e Type of fault/problem and suspected cause
e Diagnostic messages (error messages)
E-Mail: service@amk-antriebe.de
www.amk-antriebe.de

PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36 2/29

AINVK

1 Display conventions

Display

Meaning

This symbol points to parts of the text to which particular attention should be paid.

&
Parameter names, e.g. "ID2 SERCOS cycle time"
Diagnostic message, e.g. "1234 Mains failure"
0x 0x followed by a hexadecimal number, e.g. 0x500A
'Name' e.g.: Call up the function 'delete PLC programme’.

'ID0815 parameter text'
1234 diagnostic message'

'bold’

Menu items and buttons in a software or on a control unit, e.g.:

Click the "OK' button in the "Options' menu to call up the 'Delete PLC program’
function

>|nput variable<

A variable that is entered using the operator interface.

¥

In the examples, the hand symbol shows where to click.
RMB: Right mouse button

<iValue1>

Variables that need to be created by the user

3/29

PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36

ANVK

Content
1 Display conventions 3
2 Introduction 5
3 CoDeSys 5
3.1 Functionality of the CoDeSys PC software 5
4 POUs 6
4.1 Program blocks PLC_PRG and FPLC_PRG 6
4.2 Function blocks (FB) 6
4.2.1 Example: Instancing function blocks 7
4.2.2 User-defined function block 9
4.3 Functions (FUN) 12
4.4 Actions 14
5 Variables 16
5.1 Variables 16
5.2 Global variables 17
5.3 Remanent variables 18
6 Data types 19
6.1 Overview 19
6.2 Enumeration type 19
6.3 Data field (ARRAY) 20
6.4 Structure (STRUCT) 21
7 Structured text 22
7.1 Structured text (ST) 22
7.1.1 Expressions 22
7.2 ST operators (overview) 22
7.3 ST instructions (overview) 22
7.4 ST code 23
7.4.1 Assignment operator := 23
7.4.2 Calling up function blocks in ST 23
7.4.3 CASE instruction 24
7.4 4 |F instruction 25
7.4.5 FOR loop 26
7.4.6 WHILE loop 27
7.4.7 REPEAT loop 27
7.4.8 RETURN instruction 28
7.4.9 EXIT instruction 28
PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36 4/29

ANVK

2 Introduction

This documentation describes the introduction in programming according to IEC 61131-3 with the programming software
CoDeSys and the AMK function libraries. It explains the various modules, variables, data types and the instruction codes of
the programming language Structured Text.

Further information on handling CoDeSys can be found in the CoDeSys manual V2.3 documentation that is automatically
installed as well.

3 CoDeSys

CoDeSys is a PC software for controller programming according to IEC 31131-3. The EN 61131-3 (also IEC 1131 or
otherwise 61131) is the only norm for programming languages of programmable-memory controllers that is valid around the
world.

AMK is a CoDeSys Automation Alliance Partner. All AMK PLC modules are programmed with CoDeSys.

CoDeSys provides the programming platform according to IEC 61131-3, the basic library and the visualisation editor. AMK
provides the PLC hardware, the motion control libraries and preconfigured visualisation objects.

Programming languages according to EN 61131-3
IL : Instruction List

LD : Ladder Diagram

FBD : Function Block Diagram

SFC : Sequential Function Chart

ST : Structured Text

AMK applications are preferably programmed in ST. Structured Text is a higher programming language similar to Pascal with
additional language tools such as temporal processing and access to process signals.

3.1 Functionality of the CoDeSys PC software

e Programming languages according to EN 61131-3

e Task configuration that can process PLC program in various temporal levels
e Controller configuration tool for a process mapping of all I/O addresses

e Library manger, for standard, AMK and own libraries

e General online features
- Monitoring / writing / forcing of variables
- Breakpoints / single step / single cycle
- Online change
- Downloading / uploading a file
- Boot project
- Downloading of source code
e Integrated simulation (standard modules) sampling trace (integrated logic analyser, digital memory oscilloscope
(DMO), data logger)

e Recipe and watch manager to monitor variables from various modules
e Network variables

e Integrated visualisation

e Calltree

PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36 5/29

ANK

4 POUs

4.1 Program blocks PLC_PRG and FPLC_PRG

AMKASYN controllers operate with an asynchronous and a synchronous task. (A task is a temporal procedure unit of an IEC
program.)

The asynchronous task is formed by the cyclic program block 'PLC_PRG' and is the main program in the project. It is called up
exactly one time per control cycle. The cycle time is not fixed, but results from the length of the program to be processed.

The program block 'PLC_PRG' can call up other modules of the project that are then also processed in the asynchronous
task.

The synchronous (real-time) task is formed by the program block 'FPLC_PRG'. The 'FPLC_PRG'is synchronised to the
AMKASYN system cycle (PGT), in which the setpoint value channels can be read-in for example.

The 'FPLC_PRG' forms the main program for all cyclic-synchronous module calls in the project. The program block 'FPLC_
PRG' can call up other modules of the project that are then also processed in the synchronous task.

The cycle time is fixed and is set by the parameter ID2 'SERCOS cycle time' in the basic device.

Do not delete the modules 'PLC_PRG' and 'FPLC_PRG' and do not rename them either (under the con-
& dition that you do not use any task configuration). 'PLC_PRG' is generally the main program in the project.

I CoDeSys - ASD.pro* - [PLC_PRG (PRG-5T)] - AIPEX PRO =10] x|
Project Online Edit Wjew Extras Startup PLC CaoDeSws 7

DFHEeEBE=wi s eS8 a2

% File Edit Project Insert Extras Online Window Help == x|

L=l e e R e e e A L

1 10001|(* functionality:
0002|Cyelic-program PLC_PRG, called with PLC_TASK-cycletime
0003|")
0004|PROGRAM PLC_PRG
0005(VAR
0006 boFlag: BOOL;
0007|END_VAR
0008

| |Lin: 1, Cal: 1 [OMLINE [0 [READ

Y

4.2 Function blocks (FB)
Function blocks encapsule a program code with internal variables, i.e. they feature a memory.

The output values ('VAR_OUT', 'VAR_IN_OUT') depend on the input values ('VAR_IN', 'VAR_IN_OUT') and values of the
internal variables.
The values of the internal variables are sustained between the call-ups.

An FB is created one time and can be instanced infinitely. An FB is instanced by creating a copy of the FB.
This copy contains a name and is presented to the programming system by variable declaration. (See Example: Instancing
function blocks on page 7.)

There are standard function blocks (from AMK or CoDeSys) or user-defined function blocks (created by the user).
See User-defined function block on page 9.

6/29 PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36

ANVK

4.2.1 Example: Instancing function blocks

Click with the mouse in the program editor.
Press the 'F2' button to open the 'Input assistant'.
In the standard function blocks, you can find the 'FB VIRTUAL_VGEN' used in the example.

EEODESyS - ASD.pro™ - [FPLE PH Input assistant

Cnline Edit

Project

View Extras

ST Operataors

|

ODEEE B g =

ST Keywords

Wy, Fl= Edic Project Insert Exl

Standard Functions
|1zer defined Functions

2| H|@|edE|5 2R

:Standard Function Block s
Idzer defined Function B

A POUs
Ea Mew Falder

E-[E] PLC_PRG

4| | r

0004

0005

0006

ooo7

0008

I

Local ¥ anables

Global Wariables
Standard Programs
I1zer defined Programs
System Yariables
Carverzsion Operatars
E numerations

PF
VA

0077

0078

0079

0080

0081

0082

0083

0084

¥[F2]

v “with Arguments

¥ Structured

-1 03_Pasition

-3 04 Marual

- 0B_Fallaw

-0 07_Conwert/Cale
-3 08_Feedforward
(] 09_Filter

-3 10_Buffer

-3 11_Modula

-3 12_Increment
-3 13_Timing contral
~(Z3 14_I_ 0 Handling
-1 17 Date

-~ 18_File

-3 20 Mirtual Master

-] ok, |
Cancel |

[E] VIRTUAL_VGEM_A [FE] ' |

IE =R

0085

FaTal=1rd

|

-

L[

[Lirv: 20, Col.: 1

[ONLIME [0 [RE&D

Y

PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36

7129

ANK

Assign a name to the copy. The original name is entered as type in the 'Declare Variable'.

& CoDeSys - A5D.pro* - [FPLC_PRG {PRG-ST)] - AIPEXF -0l x|
Project Online Edit Wiew Extras Startup PLC CoDeSys 7

= = T ————————
J [= E & | E K | Declare Yariable x|

Wy, Filz Edii Project Insert

Claz=z Type 0K
H| B|@| oo BlSs B ver [[bMaster [VIRTUAL_VGEN] L] _ o |
— C |
= 0004| Sembal list ity alue Address ﬁl
POUs - ouaio]
Ela Mew Folder ggg: IDewce_Canlguratu:u _I I ™ CONSTANT
- [5) Exameid] [Sop7| Comment I~ RETAIN
B[] PLC_PRG [F
..... I ts t —
kS yste 0077 B
00AB/fbMaster(
0079 c=,
0080 hoEmergency_Stop:=,
0081 diEmergency_StopRamp:=,
0082 diVelocity:=,
0083 siOverride:=,
0084 diSetPosition=, (-
_‘l | | [o085 stDevice:=, -
l-[: % aAnoes ll_l.-l:r..--._-‘ LI_
| [Lirv: 7. Cal.: 1 [ONLINE [0% [READ
2 hum g
The declaration is entered automatically in the 'Declare Variable window'.
B2 CoDeSys - ASD.pro* - [FPLC_PRG (PRG-5T)] - AIPEX PRD 10| |
Project Online Edit Wiew Extras Startup PLC CoDeSys ¢
DEEdEBEg=wwl ' BR S &S
Wy, Fi= Edit Project Insert Extras Online Window Help - 5] x|
B 10|l o A GR| Coloak] o [o
0005|VAR o
=3 Pous 0006 =
B3 New Foider || To007] (“fbMaster: VIRTUAL_VGEN:
b Examplg 0008 b
=) GEASE | [o00s|END_YAR .
B[] PLC_FRG [F = -
e InitSyste W—I—I D
00L8/fbMaster) .
007 Xec:=,
0080 hoEmergency_Stop:=,
0081 diEmergency_StopRamp:=,
00g2 diVelocity:=,
0083 si0verride:=,
0084 diSetPosition:=, (-
_‘l | *1| |oos5 stDevice:=, _
IIISII%I Anos iI_I..l:n...._-. LI_
| Lin: 7, Cal. 1 [ONLIME [OW [READ
B hm oy

81/29

PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36

ANMK

4.2.2 User-defined function block

The example shows how you insert a user-defined function block and then invoke itin the 'PLC_PRG'.

Click with the RMB on the 'POUs' and afterwards on 'Add Object' to insert a new function block.

Type of POU: Function Block

Name of the new POU: freely selectable
Language of the POU: freely selectable

B CoDeSys - ASD.pro* - [PLC_PRG (PRG-ST)] - AIPEX PRO =10l x|
Projeck Online Edit Wiew Extras Startup PLC CoDeSys 7

DEHEEE 2«0/ =688 as2

ﬁ Filz= Edit Project Insert Extras Online ‘Window Help - 5] x|

= 8@

2o |G S| % [B| % (B[]

= |0001]

Xl
Rename Object.' Mame of the new POL: IM‘ OF. |
Edit @bject _ _
PLC_PF = Type of POL Language of the POL Cancel |
. " Progiam L
Delete Ghject | |
Convert Ohject, ., i."“*Fur'uc:tiur'u Block LD
Export object... Function " FED
Ohject Properties, Betumn Tupe: " SFC
Project database 4 I | 5T
Add Action " CFC
Mew Folder
Expand Mode J J
- |I[: I Collapse MNode —T
|
| [Lin:24,Col: 17 [OMLINE [0V [READ
R
PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36 9/29

ANK

Create the required variable types in the 'Variable declaration window".
Write your function code in the 'Program editor".

B2 CoDeSys - A5D.pro* - [OWN_FB (FB-5T)] - AIPEX PRO —|of =]
Projeck Online Edit Wiew Ewxtras Startup PLC CoDeSys 7

DsdeEBE?wE| i RE S a2

Wy, File Edit Project Insert Extras Onlne Window Help 18] x|

PR

B 28
= rou 0001|FIHICTION_BLOCK O
: ¥ 0002VAR_INPUT
/7IE] DIFFERENCE FUN) -t Topg3| ilnputValuet: INT;
ilnputValue2: INT;

- FPLC_PRG [FRG) 0go4

N 0bO5|END_VAR

E-|5] PLC_PRG PRG] 0D06|VAR_OUTPUT

0R07| iOutputValue: INT;
008[END_VAR

VAR

iinternalvariable: INT:

FB

0001|(*Programm code™)
|

IEN PPN

|Lin: 7. Col: 20

[OMLINE [0 [READ

S m

(*Programm code*)

e.qg.

ilnternalvariable := ilnputValue1 + ilnputValue2;
iOutputValue :=ilnternalvariable + 10;

10/29 PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36

AINVK

Switch to the 'PLC_PRG'.

Click with the mouse in the program editor.

Press the 'F2' button to open the 'Input assistant'.

You will find your FB under the '"User defined Function Blocks'.

L& CoDeSys - A5D.pro* - [PLC_PRG (PRG-5T)] - AIPE =10 x|
Projeck Online Edit Wiew Extras Startup PLC CoDeSys 7

DEHeEE?~E B8 582

ﬁ Fil= Edit Project Insert Extras Online \Window Help == x|

LI e e R S A = =
0001|(* functionality:

3 PO 0002|Cyclic-program PLC_PRG, called with PLC_TASK-cycletime
""" DIFFEREMCE [FUN] 0003 J.}

FPLE_PHG [PHE] A A s S AR R A e
4

-
| » | |

o =) KT | {0018
0017 ,.
0018 F2 —
x
ST Operators] Usger defined Function Blocks Dk
5T Eepwords ; l_l

Standad Functions | m Cancel |
Ilzer defined Functions

Standard Function Blocks
iU zer defined Function Blocs

-

- Local Varables »
| Global Variables _I_
l_ Standard Programs
L |User defined Programs |DNL|NE Iﬁ |HE'&D
Systemn Yariables MUM
Carreersion Operatars E I_ 4
Enumerations
W with &rguments W Structured
You can instance your FB now as often as you want.
(See Example: Instancing function blocks on page 7.)
& CoDeSys - ASD.pro* - [PLC_PRG (PRG-ST)] - AIPEX PRO -0l x|
Projeck Online Edit Wiew Exktras Startup PLC CoDeSys 7
[DZHaEHE?el (DRSS &S
Wy Fil= Edit Project Insert Extras oOnline Window Help -5 x|
8| 8@ DIS (S5 # %] * |65
0027 =
24 POUs . :
: 0028/ fbOWN_FB_1: OWN_FB:
o DIFFEREMCE [FUM] 0029|E
~[E] FPLC_PRG (PRG) 0030[VAR_IN_OUT

: OWN_FE [FE]

RSN FLC FRG (FRG) EETE
0016

0017 |fbOWN_FB_1 (

0018 ilnputValuel:=,

0019 ilnputValue2:=,

0020 iOutputValue=>); -

| |Lin: 17, Cal.: 1 [OMLIME IW [READ

2w

"
3 Y

PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36 11729

ANK

4.3 Functions (FUN)

A function is a module that returns exactly one return value as the result of the command.
A function declaration begins with the keyword 'FUNCTION".

A function is notinstanced.

Example:
The user-defined function 'DIFFERENCE!' calculates the difference between the input values <iValue1> and <iValue2>.
The return value is an 'INT' type.

L CoDeSys - A5D.pro* - [DIFFERENCE (FUN-ST)] - AIPEX PRO B] B4
Projeck Online Edit Wiew Extras Startup PLC CoDeSys 7

DedeBg?2«0 RS &S

ﬁ File Edit Project Insert Extras Online ‘Window Help - 5] x|

LIl Rl i A = A = =
D001FUNCTION DIFFERENCE : INT
S pobs 0002|VAR_INPUT

______ 0003 iValue1: INT;
("Il FPLC_PRG [PRE) 0004 iVaule2: INT:

[-[] PLC_PRG [PRG] 0005|END_VAR
0006(VAR

0007 |END_VAR
nnna

T [
ooo1
0oo2
0003|DIFFERENCE = iValue1 - iVaule2;
0004
= —— 0005

|
| |Lin.: 7, Cal: & [ONLINE [0V [READ

S

12 /29 PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36

ANMK

Call up the 'DIFFERENCE' function in the 'PLC_PRG..
Create a variable in which the return value can be transferred.

L& CoDeSys - A5D.pro* - [PLC_PRG (PRG-5T)] - AIPEX PRO - 10| x|
Projeck Online Edit Wiew Extras Startup PLC CoDaeSys 7
a2l I mE(S a2
Wy, Fle Edit Project Insert Extras Onlne Window Help -2 x|
E| |@] oo B[S0 |SAH| (B ¥ ||]
= 0022 iVariableWs: INT; =
- Pl 0023 iErgebnis: INT;
S| DIFFERENEE FUN)) /o024 iErgebnisWs: INT;
7S] FRLC_PRG [PRE) {7 iDifferenceValue: INT; [
FLC_PRG [PRE] 0026[END VAR -
. [e
0012 =
0013|("Call Funection [Aufruf Funktion®) [
0014
0015|iDifferenceValue ;= DIFFERENCE (iValue1:=7, iVaule2:= 5);
0016
and7 hd
< o
IEFENENEE R T e 0D Yy i
| [Lin: 25, Col.: 2 [ONLINE [0% [READ
B g
PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36 13729

ANK

4.4 Actions

Actions can be defined and added to function blocks and programs.
Every action receives a name.

An action operates with the data of the function block or program to which it belongs. The action uses the same input/output
variables and local variables as the superordinate module.

Using actions, the program code becomes clearer and more structured. An action needs less program resources. An
instancing is not possible.

Example: Insert action in the 'FPLC_PRG'.
Click on the 'FPLC_PRG"' with the RMB. Open the 'New Action' window by clicking on 'Add Action’.
Select the programming language and assign a name then for the new action.

I CoDeSys - A5SD.pro* - [PLC_PRG {PRG-5T)] - AIPEX PRO =13 x|

Project Onlime Edit View Extras Startup PLC CoDeSys 7

DeHdaBEBg?2~E ‘eSS &g

Wy, File Edit Project Insert Extras Online ‘Window Help =]

H| B|@)]|ed [2G| (5| & 5|55

0001|(* functionality: =
‘3 PO 0002|Cyclic-program PLC_PRG callad with P1 ¢ TASK-ruelatima
""" DIFFEREMCE [FLIM) 0003 x|
N Add Object. . 1PLC_PR .
b OwM_FE [FB] Rename Object. .. i Mame of the new Action: INEMCtIDn ’ Ok I
E-[E] PLC_PRG [FRG) Edit Object 0: (" ini | Language of the Action Cancel |
Copy Ohjeck | ‘e
Delete Ohjeck InitOk THI 1L
Convett Object. .. RN: { Re | € LD
Export object. .. . " FBD
- Object Propetties. .. 2 below, if | — SFC
B 1P % Project database } v 5T

j .

Enter your program code. The declaration of the variables takes place in the superordinate module.

I CoDeSys - A5SD.pro* - [NewAction (ST) - FPLC_PRG (PRG-ST)] - AIPEX PRO N m] [
Projeck Online Edic Wiew Extras Startup PLC CoDeSys 7

DeHdaEHgE?2«0 i mE(Sags

Wy, Fil= Edit Project Insett Extras oOnlne Window Help 18] x|
B B@]ed B2 (2R & (B ¥ (5[]
0001
3 POUs 0002
i 0003| (*keying program code®
6@ RG] 0004{ ying prog)
P ction 0005| iValue := iValue1 + iValue2:
-[5] OwN_FE (FB) 0006
&-[g] PLC_PRG [PRG) 0007
0008
0009
0010
i _ 0011
| |Lir.: B, Cal: 1 [OMLIME [0V [READ
S

14 /29 PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36

ANMK

The action is invoked by the name followed by ();. '"NewAction();"

L& CoDeSys - ASD.pro* - [FPLC_PRG (PRG-5T)] - AIPEX PRO N [m]
Project Online Edit Miew Extras Startup PLC CoDeSys 7

DzHdeEHE?2«0| I RS a2

Wy, Fil= Edit Project Insert Extras Online Window Help ===l

EEE

ol o || G| % (B 3 (B[

= 0001|(* functionality: (=
- FOUs 0002|External event-program FPLC_PRG, called by FPLC_TASK in PGT-cyel_
""" DIFFEREMCE [FLIM] 0003 *}
-] L'—33F'F“33' 0004|PROGRAM FPLC_PRG -
: =] Usiin] g} 4 I I » I
= O%w/N_FE [FE] 0007 — —
PLIEPRGIFRE) || X0008|(* call action, Aufruf Aktion®)
0009
Qo010 NewAction();
00 [L
. _ 0012 .
| [ln:10.Cel: 13 [OMLINE [0% [READ
B [y
PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36 15/29

ANK

5 Variables

5.1 Variables

In accordance with IEC 61131-3, each variable thatis used in the controller application has to be assigned a class and a type.
Type: See Overview on page 19.

Example module classes:

POU
Inputvariables Outputvariables
local
boStart —— variables
diValue! ——» diSubtotal

— 5 diResult
diValue2 ——p

Local variables

All local variables of a module are declared between the keywords '"VAR' and 'END_VAR'. Local variables have no
connection to the outside, i.e., nothing can be written into them from the outside.

Input variables
All local variables are declared between the keywords 'VAR_INPUT' and 'END_VAR'
that are send along as input variables when the module is called up at the calling point.

Output variables

All local variables are declared between the keywords 'VAR_OUTPUT' and 'END_VAR'
that serve as output variables of a module, i.e., these values are

returned to the calling module where they can be queried and processed further.

Input and output variables
All local variables are declared between the keywords 'VAR_IN_OUT' and 'END_VAR'
that serve as input and output variables of a module. For example structures.

Declars Yariauic x|
I arne
= _EIK
[bostart [pooL [
- Cancel |
Initial % alue Addressz
[Globale_Mariablen j I _II ™ CONSTANT
Comrment; [RETAIN
[~ PERSISTENT

16 /29 PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36

AINVK

5.2 Global variables

"Normal" variables, constants or remanent variables can be declared as global variables that are known i
but also network variables that additionally serve the data exchange with other network devices.

You can specify the type in the variable declaration window.

Declar- variable x|
PAacs Mame Tvpe _EIK
VAR_GLOBAL |bErrar [pooL [

Canicel |
Sumbaol ligt [nitial % alue Addrezs

[3lobale Y ariablen

-

L

-]

[COMSTAMT
[~ BETAIN
[~ PERSISTEMT

n the entire project,

The global variables are saved under 'Resources' 'Global Variables' in the respective directories.

EEDDESyS - ASD.pro* - [Globale_¥ariablen] - AIPEX PRO - O] =|
Project Online Edit Wiew Extras Startup PLC CoDeSys 7

CeHdeHE=®"0'BR S a2

Q File Edit Project Insert Exkras Online Window Help = 15] x|

Ll el el T e e A = R
— 0001|VAR_GLOBAL
3% Resources =1| o002 bolnitOk: BOOL;
E| -3 Global Yarniables —| |ooo3
. Device Eunflguratlon [COMSTAMT] 0004 boError: BOOL:
i 0005
5 0006 END_VAR
P . Varlablen_Kunflguratlun [WAR_COMFIG) - 0007
« | ;I_I 0008

|

3

F'DLISI B8 Data t_l,l...l Uisualiz...l % HESDUJ

1
[OMLIME [O% [READ

Bl b

PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36

171/29

ANK

5.3 Remanent variables
Remanent variables can keep their value beyond the usual program running time.
This includes retain variables and persistent variables.

VAR RETAIN PERSISTENT &

After online command VAR [VAR RETAIN | VAR PERSISTENT
VAR PERSISTENT RETAIN
Reset - X - X
Power failure during switching-on/-off
Reset cold - - - -
Reset source - - - -

Program is deleted

Load (=download) - -

Online change X X

x = Value is retained - = Value is re-initialised

You can specify the type in the variable declaration window.

x
M ame Type _I:IK
[beEmor [eooL =
Cancel |
Sumbol list Initial ¥ alue Address
Device_Configuratio j I _II

[~ BETAIN

Comrment;
[~ PERSISTENT,

18 /29 PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36

ANVK

6 Data types

6.1 Overview

The naming of variables in all applications and libraries should, if possible, be based on the

Hungarian notation:

For each variable, a sensible succinct English description should be found, the

basic name. The respective first letter of a word of a basic name should be capitalised; the others written small
(example: FileSize). If needed, a translation file can be created additionally in other languages.

In front of these basic names, prefixes are added in small letters depending on the variable's data type.

Data type Lower limit Upper limit Information content | Prefix | Note

BOOL FALSE TRUE 1 bit bo

BYTE 8 bit by Bitstring, not for arithm. operations
WORD 16 bit w Bitstring, not for arithm. operations
DWORD 32 bit dw Bitstring, not for arithm. operations
LWORD 64 bit Iw Bitstring, not for arithm. operations
SINT -128 127 8 bit si

USINT 0 255 8 bit usi

INT -32.768 32.767 16 bit i

UINT 0 65.535 16 bit ui

DINT -2.147.483.648 | 2.147.483.647 | 32 bit di

UDINT 0 4.294.967.295 | 32 bit udi

LINT -263 263 -1 64 bit li

ULINT 0 264 -1 64 bit uli

REAL 32 bit r Floating point number

LREAL 64 bit Ir Floating point number

STRING s |

TIME tim

TIME_OF_DAY tod

DATETIME dt

DATE date

ENUM 16 bit en

POINTER p

ARRAY

6.2 Enumeration type

All values of the enumeration type are defined with name when the type is declared (see example: Declaration). An order is
specialised thereby (see example: release = 0, config_active = 1) that specifies an order of the individual values.

An enumeration type is known globally in the project.

PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36 19/29

AMK

Example: Declaration

VAR
enState: (*Enumeration type*)

(
Release, (*Value 1%)
Config_active, (*Value 2%)
Config_ended, (*Value 3%)
Main_program_active (*Value 4%)
);

END_VAR

Example: Program code with CASE loop and enummeration.
CASE enState OF

Release:

Program code....

enState := Config_active;
Config_active:

Program code....

enState := Config_ended;
Config_ended:

Program code....

enState := Main_program_active;
Main_program_active:

Program code....

END_CASE

Advantage: The variable enState accepts the name of the status.

6.3 Data field (ARRAY)

An ARRAY (also called data field) serves to save greater amounts of data of the same data type. An ARRAY can contain any
number of elements. You need the name of the array and the index to access a single element.

One-, two- and three-dimensional arrays of elementary data types are supported.
Arrays can be defined in the declaration part of a module and in the global variable lists.
By switching arrays (ARRAY[0..2] OF ARRAYI[0..3] OF ...), a maximum of 9

dimensions may be created.

Example:
The array consists of 10 elements, which each may save one INT value.

arDiagnosis: ARRAY [1..10] OF INT;

Access to arrays:
<ARRAY_Name>.<[element number]>
Example:

arDiagnosis[1];

20/29 PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36

ANVK

Example:

The array consists of 10 elements, which each may save the content of the structure ST_AXIS_ERROR.

arstDiagnosis: ARRAY [1..10] OF ST_AXIS_ERROR;

TYPE ST_AXIS_ERROR:

STRUCT
boErr: BOOL;
iAdr: INT;
iDiagNo: INT;
dilnfo1: DINT;
END_STRUCT
END_TYPE
Access to ARRAYS:

(* Error *)

(* Address *)

(* Diagnostics number *)
(* Additional info 1 *)

<ARRAY_Name>.<[element number]>.<Structure_Name>.<Component name>

Example:
arDiagnosis[1].ST_AXIS_ERROR.boErr

6.4 Structure (STRUCT)

Variables that, for example, belong together are combined to an own data type in a structure.

A structure is known globally in the project.

Structures are deposited as objects (data types) in the Object Organizer under the Data type tab. They begin with the

keywords TYPE and STRUCT and end with END_STRUCT and END_TYPE.

Example:
TYPE ST_ACTUAL_VALUES::
STRUCT
diVelocity_feedback_value
diPosition_feedback_value:
diTorque_feedb_value:
END_STRUCT
END_TYPE

Access to structures:
<Structure_Name>.<Component name>
Example:

DINT;
DINT;
DINT;

ST_ACTUAL_VALUES diVelocity_feedback_value

(* Actual speed *)
(* Actual position *)
(* Actual torque *)

PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36

21/29

AINVK

7 Structured text

7.1 Structured text (ST)

The structured text consists of a series of instructions that can be executed as in the higher languages according to conditions
(IF.THEN..ELSE) or in loops (WHILE..DO).

Example:
IF value <7 THEN
WHILE value <8 DO
value :=value + 1;
END_WHILE;
END_IF;

7.1.1 Expressions

An expression is a construction that returns a value after its evaluation.
Expressions are a combination of operators and operands. An operand can be a
constant, a variable, a function call or a further expression.

Evaluation of expressions

The evaluation of an evaluation is done by processing the operators according to certain
binding rules. The operator with the strongest binding is processed first, then the operator
with the next weakest binding, and so forth until all operators have been processed.
Operators with equal binding strengths are processed from left to right.

7.2 ST operators (overview)
In the following, you will find a table of the ST operators in the sequence of their binding strength:

Operation Symbol Binding strength
Bracketin (expression) Strongest binding
Function call Function name (parameter list)

Exponentiate EXPT

Negate -

Complementation NOT

Multiply *

Divide /

Modulo MOD

Add +

Subtract -

Compare <> <=>=

Equals =

Unequal <>

Bool AND AND

Bool XOR XOR

Bool OR OR Weakest binding

7.3 ST instructions (overview)
The following table presents in tabular order the instructions possible in ST with one example each:

22129 PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36

ANVK

Instruction type

Example

Assignment

A:=B; CV:=CV + 1; C:=SIN(X);

Calling up a function block and using the FB output

CMD_TMR(IN := %IX5, PT := 300);
A:=CMD_TMR.Q

RETURN

RETURN;

IF

D:=B*B;

IF D<0.0 THEN
C:=A;

ELSIF D=0.0 THEN
C:=B;

ELSE C:=D;
END_IF;

CASE

CASE INT1 OF

1: BOOL1 := TRUE;
2:BOOL2 = TRUE;
ELSE

BOOL1 := FALSE;
BOOL2 := FALSE;
END_CASE;

FOR

J:=101;

FOR I:=1 TO100BY 2 DO
IF ARR[l]=70 THEN

J:=I; EXIT;

END_IF;

END_FOR;

WHILE

J:=1;

WHILE J<=100 AND ARR[J] <> 70 DO
Ji=J+2;

END_WHILE;

REPEAT

J=-1;

REPEAT

Ji=J+2;

UNTIL J=101 OR ARR[J]=70
END_REPEAT;

EXIT

EXIT;

Empty instruction

)

7.4 ST code

7.4.1 Assignment operator :=

On the left side of an assignment, there is an operator (variable, address).
The value of the expression on the right side is assigned to the operator.

Example:

After executing this line, <iVar1> has ten times the value of <iVar2>.

iVar1 :=iVar2 * 10;

7.4.2 Calling up function blocks in ST

A function block is called up in ST by entering the instance name of the original function block in the programming editor. In
the subsequent brackets, you can assign values or variables to the input and output variables. See Example: Instancing

function blocks on page 7.

PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36

23/29

AMK

In the example, an FB is called up for parameter reading. It reads the ID116 'Resolution motor encoder' of the <g_stAchse1>
and writes the result into the variable <diEncoderresolution>.

foREAD_ID_DINT(

boExec:=,

uilDNo:=, 116,

uiParlnst:= 0,

stDevice:= g_stAchse1,
boDone=>,

boErr=>,

iErrlD=>,

dilDVal=> diEncoderresolution);

Alternative access via the point operator to the individual elements.

Example:
foREAD_ID_DINT.boExec := TRUE;
diEncoderresolution := foREAD_ID_DINT.dilDVal;

FB instancing: See Example: Instancing function blocks on page 7.

7.4.3 CASE instruction

Using the CASE instruction, several conditional instructions with the same
condition variables can be combined in one construction.

A CASE instruction is processed according to the following scheme:
e [fthe <iStatus> variable has the value 1, the instruction [1] is processed, value 2 corresponds to instruction [2] etc.

e Ifthe same instruction [3] should be executed for several values of the variable [3,4], then you can write these values
after each other separated by commas.

e Ifthe same instruction [4] should be executed for a value range of the variables [5..10], then you can write the start and
end values after each other separated by two periods.

e If <iStatus> has none of the specified values, then the ELSE instruction [5] is executed.

CASE <iStatus> OF
1: Instruction 1
2: Instruction 2
3,4: Instruction 3
5.10: Instruction 4
ELSE Instruction 5
END_CASE

24 /29 PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36

ANVK

Example: CASE instruction with integrated IF instructions

CASE iStatus OF

0: (*Instructions system initialisation *)
IF boSystemReady THEN
iStatus := 1;
END_IF
1: (* Program distribution *)
IF boSetupMode THEN
iStatus := 2;
ELSIF boMainProgram THEN
iStatus = 3;
ELSIF boRestart THEN
iStatus :=0;
END_IF
2: (* Instructions Setup mode *)
IF boMainProgram THEN
iStatus := 3;
ELSIF boRestart THEN
iStatus := 0;
END_IF
3: (* Instructions main program *)
IF boNeuStart OR boError THEN
iStatus :=0;
END_IF
END_CASE

7.4.4 IF instruction

With the IF instruction, a condition for 'true’ or 'false' can be checked. Instructions can be executed depending on the condition.
The partin the curly brackets {} is optional.

e If <Boolean_expression1>returns TRUE, then only the IF instruction is executed and none of the further instructions.

e Otherwise, the Boolean expressions, beginning with <Boolean_expression2>, are evaluated one after the other until
one of the expressions results in TRUE. Then only the instructions after this Boolean expression and before the next
ELSE or ELSIF is evaluated.

e I[fnone of the Boolean expressions results in TRUE, then the ELSE instruction is executed exclusively.

IF <Boolean_expression1> THEN

IF instruction

{ ELSIF <Boolean_expression2> THEN
ELSIF instruction 1

ELSIF <Boolean_expression3> THEN
ELSIF instruction 2

PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36 25/29

AMK

ELSE ELSE instruction }
END_IF

Examples: Boolean expressions

<boStart> = TRUE alternative query <boStart>
<boError> = FALSE alternative query NOT <boError>
<boValue>< 17

7.4.5 FOR loop

Using the FOR loop, you can program repetitive processes.
INT_Var:INT;

FOR <INT_Var> := <INIT_WERT>
TO <END_VALUE>

{BY <increment value>}
DO <Instructions>

END_FOR;

The partin the curly brackets {} is optional.

e The <instructions> are executed until the counter <INT_Var> reaches the <END_VALUE>.

e Thisis checked before executing the <instructions> so that the <instructions> are never executed if <INIT_VALUE> is
greater than <END_VALUE>.

e Every time <instructions> were carried out, <INT_Var> is increased by <increment value>.

e The increment value can have any integer value. If no value is specified, the increment value is set to the value 1. The
loop is ended, because <INT_Var> only becomes greater.

FOR iCounterF := 1

TO5

BY 1
DO iVariableF :=iVariableF * 2;
END_FOR;

iResultF = iVariableF

Start value: iVariableF = 1;
iResultF = 32;

The <END_VALUE> may not be the limit value of the counter <INT_VAR>. For example, if the variable

Counter is of the type SINT, the <END_VALUE> may not be 127, because otherwise there is an infinite
loop.

&

26/29 PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36

ANVK

7.4.6 WHILE loop
The WHILE loop can be applied like the FOR loop with the difference that the
termination condition can be any Boolean expression.

The <instructions> are repeatedly exectuted as long as the <Boolean_expression> results in TRUE.
If the <Boolean_expression> returns FALSE already at the first evaluation, then the
<instructions> are never executed.

If the <Boolean_expression> never results in the value FALSE, then the <instructions> are repeated endlessly, causeing a
runtime error.

The programmer has to ensure that no infinite loop is created by
changing the condition in the instruction part of the loop, for example with a counter that counts up or
down.

&

WHILE <Boolean expression> DO
<Instructions>
END_WHILE;

Example:
Start values: iCounterWL :=5;
iVariableWL = 2;

WHILE iCounterWL <> 0 DO
iVariableWL :=iVariableWL * 2;
iCounterWL = iCounterWL - 1;

END_WHILE

iResultWL :=iVariableWL

End values: iResultWL = 64;

7.4.7 REPEAT loop

The REPEAT loop differs from the WHILE loop in that the termination condition is not checked until after executing the loop.
This results in the loop being run through at least once, regardless of the result of the termination condition.

¢ The <instructions> are exectuted until the <Boolean_expression> results in TRUE.
e [f<Boolean_expression>returns TRUE already at the first evaluation, then the <instructions> are executed just once.

e If <Boolean_expression> never results in the value TRUE, then the <instructions> are repeated endlessly, causing a
runtime error.

The programmer has to ensure that no infinite loop is created by
changing the condition in the instruction part of the loop, for example with a counter that counts up or

down.
REPEAT <Instructions>
UNTIL <Boolean_expression>

END_REPEAT

PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36 27129

ANK

REPEAT
iVariableR :=iVariableR * 2;
iCounterR :=iCounterR - 1;
UNTIL iCounterR=0
END_REPEAT

7.4.8 RETURN instruction

With the RETURN instruction, you can exita module.
For example, if a condition is not met.

7.4.9 EXIT instruction
EXIT exits the innermost loop in nested FOR, WHILE or REPEAT loops, regardless of the termination condition.

28/29 PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36

ANVK

Your Opinion is Important!

With our documentation we want to offer you the highest quality support in handling the AMK products.
Thatis why we are now working on optimising our documentation.

Your comments or suggestions are always interesting for us.

We would be grateful if you take a bit time and answer our questions. Please return a copy of this page to us.

e-mail: dokumentation@amk-antriebe.de

— or
E — fax-No.: +49 (0) 70 21 /50 05-199

Thank you for your assistance.
Your AMK documentation team

1. How would you rate the layout of our AMK documentation?

(1) very good (2) good (3) satisfactory (4) less than satisfactory (5) poor

2. lIs the content structured well?

(1) very good (2) good (3) moderate (4) hardly (5) not

3. How easy is it to understand the documentation?

(1) very easy (2) easy (3) moderately easy (4) difficult (5) extremely difficult

4. Did you miss any topics in the documentation?

(1) no (2) yes, which:

5. How would you rate the overall service at AMK?

(1) very good (2) good (3) satisfactory (4) less than satisfactory (5) poor

AMK Arnold Miller GmbH & Co. KG
phone : +49 (0) 70 21 /50 05-0, fax: +49 (0) 70 21 / 50 05-199,
info@amk-antriebe.de

PDK_204019_Basiswissen_AMK_Steuerungsprogrammierung / Version 2012/36 29/29

mailto:dokumentation@amk-antriebe.de?subject=Please enter the document name here
mailto:dokumentation@amk-antriebe.de?subject=Please enter the document name here

	1 Display conventions
	2 Introduction
	3 CoDeSys
	3.1 Functionality of the CoDeSys PC software

	4 POUs
	4.1 Program blocks PLC_PRG and FPLC_PRG
	4.2 Function blocks (FB)
	4.2.1 Example: Instancing function blocks
	4.2.2 User-defined function block

	4.3 Functions (FUN)
	4.4 Actions

	5 Variables
	5.1 Variables
	5.2 Global variables
	5.3 Remanent variables

	6 Data types
	6.1 Overview
	6.2 Enumeration type
	6.3 Data field (ARRAY)
	6.4 Structure (STRUCT)

	7 Structured text
	7.1 Structured text (ST)
	7.1.1 Expressions

	7.2 ST operators (overview)
	7.3 ST instructions (overview)
	7.4 ST code
	7.4.1 Assignment operator :=
	7.4.2 Calling up function blocks in ST
	7.4.3 CASE instruction
	7.4.4 IF instruction
	7.4.5 FOR loop
	7.4.6 WHILE loop
	7.4.7 REPEAT loop
	7.4.8 RETURN instruction
	7.4.9 EXIT instruction

